November 2019
Title:On embeddings of Klein simple group into the Cremona group.
Abstract:
The Cremona group is the group of the birational transformations of the projective space. It is known that for any finite subgroup G in the Cremona group there is a rational variety X on each G acts biregularly. By running G-MMP on X we get a rational GQ-Mori fiber space. The study of embeddings of G into the Cremona group is equivalent to study of rational GQ-Mori fiber spaces. I will talk about PSL_2(7)Q-del Pezzo fibrations, their rationality, and the relation to quotients of certain quartic threefolds.
This a joint work with Takuzo Okada. This talk is related to his talk at this conference.